On convergence rate of the augmented Lagrangian algorithm for nonsymmetric saddle point problems
نویسنده
چکیده
We are interested in solving the system [ A LT L 0 ][ c λ ] = [ F G ] , (1) by a variant of the augmented Lagrangian algorithm. This type of problem with nonsymmetric A typically arises in certain discretizations of the Navier–Stokes equations. Here A is a (n,n) matrix, c, F ∈ R, L is a (m,n) matrix, and λ,G ∈ R. We assume that A is invertible on the kernel of L. Convergence rates of the augmented Lagrangian algorithm are known in the symmetric case but the proofs in [R. Glowinski, P. LeTallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics, SIAM, 1989] used spectral arguments and cannot be extended to the nonsymmetric case. The purpose of this paper is to give a rate of convergence of a variant of the algorithm in the nonsymmetric case. We illustrate the performance of this algorithm with numerical simulations of the lid-driven cavity flow problem for the 2D Navier–Stokes equations. 2004 IMACS. Published by Elsevier B.V. All rights reserved.
منابع مشابه
Augmented Lagrangian method for solving absolute value equation and its application in two-point boundary value problems
One of the most important topic that consider in recent years by researcher is absolute value equation (AVE). The absolute value equation seems to be a useful tool in optimization since it subsumes the linear complementarity problem and thus also linear programming and convex quadratic programming. This paper introduce a new method for solving absolute value equation. To do this, we transform a...
متن کاملAn Augmented Lagrangian Method for Identifying Discontinuous Parameters in Elliptic Systems
The identification of discontinuous parameters in elliptic systems is formulated as a constrained minimization problem combining the output least squares and the equation error method. The minimization problem is then proved to be equivalent to the saddle-point problem of an augmented Lagrangian. The finite element method is used to discretize the saddle-point problem, and the convergence of th...
متن کاملAnalysis of block matrix preconditioners for elliptic optimal control problems
In this paper, we describe and analyse several block matrix iterative algorithms for solving a saddle point linear system arising from the discretization of a linear-quadratic elliptic control problem with Neumann boundary conditions. To ensure that the problem is well posed, a regularization term with a parameter is included. The first algorithm reduces the saddle point system to a symmetric p...
متن کاملConvergence of a Class of Stationary Iterative Methods for Saddle Point Problems
A unified convergence result is derived for an entire class of stationary iterative methods for solving equality constrained quadratic programs or saddle point problems. This class is constructed from essentially all possible splittings of the n×n submatrix residing in the (1,1)block of the (n+m)×(n+m) augmented matrix that would generate non-expansive iterations in R. The classic multiplier me...
متن کاملOn the Convergence of Min/sup Points in Optimal Control Problems
In case f0 and C are convex, a variety of primal/dual numerical methods can be used to find the saddle points of a Lagrangian L associated with this problem [4, 7]. These methods take advantage of the fact that the search for the saddle points of L is unconstrained, or conducted over sets much simpler than C. Furthermore, we can introduce penalties on f0 in a way that regularizes L and makes it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005